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ABSTRACT

Tracking particle motion in inertial flows (especially in obstructed geometries) is a computa-

tionally daunting proposition. This is further complicated by that fact that the construction of

migration maps for particles (as a function of particle location, flow conditions, and particle size)

requires several thousands of simulations tracking individual particles. This calls for the devel-

opment of an efficient, scalable approach for single particle tracking in fluids. We bring together

three distinct elements to accomplish this: (a) a parallel octree based adaptive mesh generation

framework, (b) a variational multiscale (VMS) based treatment that enables flow condition agnos-

tic simulations (laminar or turbulent) Bazilevs et al. (2007a), and (c) a variationally consistent

immersed boundary method (IBM) to efficiently track moving particles in a background octree

mesh Xu et al. (2016). This project builds on our existing codes for adaptive meshing (Dendro)

and finite elements (TalyFEM). We present our adaptive meshing framework that is tailored for

the immersed boundary method and experiments demonstrating the scalability of our code to over

16,000 processes.
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CHAPTER 1. OVERVIEW

1.1 Introduction

This work combines our existing in-house FEM library (TalyFEM) with an existing distributed

octree meshing library (Dendro) to create a third framework we call Dendrite. In chapter 2, we

examine particle tracking in a channel, a target problem to solve as a first milestone for this

framework. In chapter 3, we conclude with some additional in-progress projects that build on this

work.

1.2 TalyFEM

TalyFEM is our in-house FEM library which we have used for several past works (Dyja et al.

(2015), Xu et al. (2016)). This library is written in C++ and is built on top of MPI and the PETSc

framework Balay et al. (2001). TalyFEM provides an API for generating, loading, and solving PDEs

on unstructured meshes using the finite element method. A constant pain point has been adaptive

meshing: problems that involve moving objects require us to regularly regenerate the entire finite

element mesh and interpolate nodal data onto the new mesh. For more complicated meshes, we use

the third party mesh generator Gmsh Geuzaine and Remacle (2009), which is implemented using

sequential algorithms. This mesh generator can take a long time to run and does not scale with

more compute resources. In this work, we integrate TalyFEM with Dendro, a distributed octree

library, to take advantage of an octree-based adaptive meshing algorithm.

While a number of impressive FEM libraries have been developed since the inception of TalyFEM

(over ten years ago), we have spent a lot of resources building, testing, documenting, and training

scientists on this library. We would prefer not to abandon it for an entirely new platform as some

projects are still being actively developed on this codebase. One of the design goals for Dendrite

(this work) is to allow us to reuse FEM kernel code from TalyFEM with minimal changes.



www.manaraa.com

2

Enabling this code reuse requires us to keep the API that the FEM kernel code uses the same.

This API encompasses basis function evaluation and access to interpolated nodal values at the

Gauss points. As we will briefly discuss in chapter 2, this is not quite straightforward as our

implementation is tightly coupled with our underlying mesh data structure.

1.3 Dendro

Dendro is an existing framework for solving PDEs using finite element methods on distributed

octree meshes. Octree meshes strike a nice balance between the simplicity of structured meshes

and the flexibility of unstructured meshes, allowing Dendro to implement mesh adaptivity in a

computationally efficient, scalable way. Dendro has already been shown to scale to over 4,000

processes and supports multigrid methods Sampath et al. (2008), which we may explore using in

the future.

1.3.1 Tradeoffs of Octree Meshes

One advantage of the finite element method is that it works with a variety of element shapes

and sizes. The most obvious drawback of using an octree mesh is that we are limited to regular

hexahedral elements in sizes of L/2i, where L is a domain size (scaling factor) and i is an integer

that ranges from 0 to a max octree depth. This also means that all elements must be aligned to

L/2i. This makes octree meshes impractical for curved body-fitted meshes without a complicated

warping scheme. However, by using an immersed boundary method (IBM), we are able to relax

the requirement that our domain boundaries perfectly align with L/2i in exchange for a surface

integration step; during assembly we integrate the effect of the boundary into the ”background

elements” intersecting it. Chapter 2 will examine the specifics of the immersed boundary method

and Dendro implementation details.

Another challenge with octree meshes is that they must be square. This complicates solving

on a non-square domain, such as a channel. While we can introduce a per-axis scaling factor to

create a rectangular domain, this creates heavily skewed elements. To address this problem, we
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also extend Dendro to support meshes with holes in them, allowing us to ”carve out” a rectangular

channel from the square octree. This ”carving out” still has limitations: we can still only ”cut” at

L/2i boundaries, and the mesh must be smoothly refined to depth i at the boundary. In practice,

this limitation is acceptable for our target problem. We do not require extremely high resolution

for our channel aspect ratio, and we often want to refine near the domain boundaries anyway.

1.4 Target Problem: Particle Tracking in a Channel

Dendrite was originally conceived to solve a particular problem of interest: tracking lateral

motion of a rigid particle as it travels in a microchannel decorated with obstacles. A solution to

this problem that can be computed quickly has applications in the design of biomedical devices.

We have previously approached this problem using a variational multiscale (VMS) based treatment

combined with a variationally consistent immersed boundary method (IBM) in Xu et al. (2016)

using TalyFEM. While promising, our implementation was too slow to run on a full 3D problem

due to a naive approach to adaptive meshing. Dendrite allows us to reuse much of the code from

this previous work with a new octree-based adaptive meshing system. Chapter 2 will examine this

problem in detail.

1.5 Summary

Dendrite combines TalyFEM, our in-house FEM library, and Dendro, an octree meshing library.

The first milestone for this project is the particle tracking in a channel problem. Scalability is

necessary for us to be able to solve our target problem, which requires us to run thousands of

simulations to generate our dataset of interest. In chapter 2, we will demonstrate strong scaling

results up to 16k processes for our target problem.
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CHAPTER 2. CASE STUDY: MOVING PARTICLE IN A CHANNEL

This chapter is based on a conference paper originally submitted to Supercomputing 2018,

written as a collaboration with Dr. Songzhe Xu, myself, Dr. Hari Sundar, and Dr. Baskar

Ganapathy Subramanian.

2.1 Introduction

Control and localization of particles (cells, precipitates) in aqueous flow is useful in biological

processing, chemical reaction control, and for creating structured materials. The controlled motion

and localization of cells and particles can automate cellular sample preparation and bio-sensing.

Some examples include fast identification of e. coli in water, robust removal of circulating tumor

cells from the blood plasma and fast separation of cells types for rapid flow cytometry and subse-

quent identification/tagging for genomic analysis. The precise, efficient and cheap localization of a

heterogeneous collection of cells in a fluid medium is a foundational challenge in science and engi-

neering. A general (computationally informed) strategy for passive control of particle localization

in microfluidic channels will be transformative to this field.

Researchers have recently discovered Amini et al. (2013) and demonstrated Stoecklein et al.

(2014, 2016) the ability to passively engineer the cross-sectional shape of a fluid (without particles

in it) using the notion of inertial flow deformations induced by sequences of pillars that disrupt

the flow. This is a purely passive approach for flow control that relies on flow physics around

bluff bodies. Since these transformations provide a deterministic mapping of fluid elements from

upstream to downstream of a pillar, one can sequentially arrange pillars to apply the associated

nested maps and therefore program complex fluid structures. This idea has been rapidly picked up

by the microfluidics and manufacturing community to make structured particles and fibers Nunes



www.manaraa.com

5

et al. (2014); Paulsen et al. (2015); Wu et al. (2015); Paulsen and Chung (2016) and for reagent

recovery in medical diagnostic devices Amini et al. (2014).

Studies have shown that this passive flow control paradigm can be extended to passively lo-

calize particles in fluid flow using a sequence of obstacles that differentially act on various sized

particles (based on size and location). While the localization (or ‘focusing’) of particles in unob-

structed microfluid channels is well known, the behavior (and control) of localization of particles

in obstructed microfluidic channels is a very novel problem with a rich physical underpinning.

Segre and Silberberg Segre and Silberberg (1962); Segré and Silberberg (1962) first experimentally

observed the phenomena of focusing of particles in a straight channel (or tube) flow. Particles

moving in such flows undergo a lateral motion across the flow streamlines until they reach a stable

equilibrium located between the channel centerline and the confining walls. Subsequent theoreti-

cal studies provided a general understanding of the lift forces and how the structure of lift forces

structure depends on the particle size, channel dimensions and flow rate (or Reynolds number).

However, the precise calculation needed to design devices that can exploit the migration of parti-

cles in flow, such as the separation, concentration, and sorting of cells and biomolecules with high

specificity requires highly accurate force calculations, which essentially becomes a computational

exercise.

Target problem: Our particular problem of interest is to track the lateral migration of a

single, rigid particle as it traverses a microchannel that is decorated with a pillar obstacle (see

Fig. 2.1). Our intent is to understand how initial release location, as well as particle size and pillar

geometry affect migration patterns.

Figure 2.1: An illustrative example of a rigid particle traversing a microchannel decorated with

obstacles. Figure shows a slice cut through the geometry.
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Tracking particle motion in inertial flows (especially in obstructed geometries) is a computa-

tionally daunting proposition. This is further complicated by that fact that the construction of

migration maps for particles (as a function of particle location, flow conditions, and particle size)

requires several thousands of simulations tracking individual particles. This calls for the de-

velopment of an efficient, scalable approach for single particle tracking in fluids. We bring together

three distinct elements to accomplish this: (a) a parallel octree based adaptive mesh generation

framework, (b) a variational multiscale (VMS) based treatment that enables flow condition agnos-

tic simulations (laminar or turbulent) Bazilevs et al. (2007a), and (c) a variationally consistent

immersed boundary method (IBM) to efficiently track moving particles in a background octree

mesh Xu et al. (2016). This project builds on our existing codes for adaptive meshing (Dendro)

and Finite Elements (TalyFEM). In the next section, we give a brief introduction to the formulation

of our target problem followed by a brief introduction of the immersed boundary method. We then

present our adaptive meshing framework that is tailored for the immersed boundary method. We

wrap up with experiments demonstrating the scalability of our code.

2.2 Target Problem

We are interested in tracking the motion and lateral forces acting on a single particle—of size a—

released at discrete points of the inlet (points shown in green in Fig 2.2). As an individual particle

flows down the channel (of width W ), it is affected by the spatially varying flow field caused by

obstruction due to the pillar (of diameter D). Note that for typical particle sizes (a/W ≥ 0.1), the

moving particle itself causes changes to the flow field (so called blockage effect). We are particularly

interested in reporting the net lateral displacement as a function of initial release location at the

inlet. We consider a finite distance downstream (typically 6D downstream of the pillar, due to

manufacturability constraints) across which we track the particle motion. The particle displacement

is reported as a vector field (Fig 2.2). Additionally, the time history of the lateral forces acting on

the particle will be reported.



www.manaraa.com

7

Figure 2.2: An illustration of the canonical target problem. Following standard practice in fluid

dynamics, we normalize length scales by the channel width, W , and consider all physical variables

in dimensionless quantities. This allows broad usability of the resulting computations, due to

kinematic and dynamic similarity principles. The canonical problem is parametrized by 5 variables:

(a) the size of the particle (a), (b) the location, δ and diameter, D of the pillar, (c) the flow speed,

characterized in terms of the Reynolds number (<), and (d) the height of the microchannel, h.

For each set of parameters (a,W,D,<, h), we hope to simulate the time evolution of the particle-

fluid interaction in the domain. Our preliminary results show that it is necessary to have a refined

mesh close to the pillar surface, the particle surface as well as the channel walls to fully resolve

the fluid velocity features. Based on the Dendro framework, we anticipate requiring 256x256x1024

∼ 70×106 hexahedral elements to discretize the domain. Each time step requires solving the Navier-

Stokes equations with no-slip boundary conditions on the particle and the channel walls. Once the

velocity field (due to the interaction between the particle and pillar and fluid) is computed, the

inertial forces on the particle are computed by performing a surface integration of the fluid stress

on the particle surface. This is then used to update the location of the particle for the next time

step.

The dimensionless Navier–Stokes equations for incompressible flow is written as(
∂u

∂t
+ u · ∇∇∇u− f

)
−∇∇∇ · σσσ = 0 , (2.1)

∇∇∇ · u = 0 , (2.2)
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where u and f are the flow velocity and the external force, respectively. The stress and strain-rate

tensors are defined respectively as

σσσ (u, p) = −p I + 2
1

<
εεε(u) , (2.3)

εεε(u) =
1

2

(
∇∇∇u +∇∇∇uT

)
, (2.4)

where p is the pressure, I is an identity tensor. The problem (2.1)–(2.4) is accompanied by suitable

boundary conditions, defined on the boundary of the fluid domain, Γ = ΓD ∪ ΓN:

u = ug on ΓD , (2.5)

−pn + 2
1

<
εεε(u) n = h on ΓN , (2.6)

where ug denotes the prescribed velocity at the Dirichlet boundary ΓD, h is the traction vector at

the Neumann boundary ΓN, and n is the unit normal vector pointing in the wall-outward direction.

Consider a collection of disjoint elements {Ωe}, ∪eΩe ⊂ Rd. The fluid domain is covered by the

closure of the collection: Ω ⊂ ∪eΩe. Note that Ωe is not necessarily a subset of Ω with the immersed

boundary method. Let Vhu and Vhp be the finite-dimensional spaces of discrete test functions and

trial solutions for velocity and pressure, which are denoted as superscript h, and represent resolved

scales (coarse scale) produced by the finite element discretization. The strong problem (2.1)–(2.6)

may be recast in a weak form and posed over these discrete spaces to produce the following semi-

discrete problem (using the VMS modeling approach): Find uh ∈ Vhu and ph ∈ Vhp such that for all

wh ∈ Vhu and qh ∈ Vhp :

BVMS
(
{wh, qh}, {uh, ph}

)
− FVMS

(
{wh, qh}

)
= 0 . (2.7)
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The bilinear form BVMS and the load vector FVMS are given as

BVMS
(
{wh, qh}, {uh, ph}

)
=

∫
Ω

wh ·
(
∂uh

∂t
+ uh · ∇∇∇uh

)
dΩ

+

∫
Ω
∇∇∇wh : σσσ

(
uh, ph

)
dΩ

+

∫
Ω
qh∇∇∇ · uh dΩ

−
∑
e

∫
Ωe∩Ω

(
uh · ∇∇∇wh +∇∇∇qh

)
· u′ dΩ

−
∑
e

∫
Ωe∩Ω

p′∇∇∇ ·wh dΩ

+
∑
e

∫
Ωe∩Ω

wh · (u′ · ∇∇∇uh) dΩ

−
∑
e

∫
Ωe∩Ω

∇∇∇wh :
(
u′ ⊗ u′

)
dΩ, (2.8)

and

FVMS
(
{wh, qh}

)
=

∫
Ω

wh · f dΩ +

∫
ΓN

wh · h dΓ , (2.9)

where primes denote the unsolved scales (fine scale) that need to be modeled, and their effect needs

to be added onto the coarse scale. u′ is defined as

u′ = −τM

(
∂uh

∂t
+ uh · ∇∇∇uh − f −∇∇∇ · σσσ

(
uh, ph

))
, (2.10)

and p′ is given by

p′ = −τC∇∇∇ · uh . (2.11)

u′ and p′ are approximated by the residuals of momentum equation and continuity equation, respec-

tively, and τM and τC are corresponding coefficients with the definitions in Bazilevs et al. (2007a).

Equations (2.8)–(2.11) feature the VMS formulation of Navier-Stokes equations of incompressible

flows Bazilevs et al. (2007a). The additional terms added onto the standard weak Galerkin form

can be interpreted as a combination of streamline/upwind Petrov Galerkin (SUPG) stabilization

and VMS large-eddy simulation of turbulence modeling.
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The particle evolution is written as

m
dV

dt
= F

J
dω

dt
= T (2.12)

where V = [up, vp, wp]
T and ω = [ωx, ωy, ωz]

T are the particle linear and angular velocities, and

F = [Fx, Fy, Fz]
T and T = [τx, τy, τz]

T are the force and torque acting on the particle. The force

is computed as the surface integral of the fluid stress over the particle surface and an explicit

time-stepper is used to update the particle location and velocity.

2.3 Immersed Boundary Method

The immersed boundary method (IBM) was first introduced by Peskin in the context of fluid-

structure interaction (FSI) for a heart simulation with associated blood flow to avoid remeshing

when the solid body deformed Peskin (1972, 1973). The IBM embeds the solid geometry into a

background Cartesian mesh without conforming them to each other, and the effect of the immersed

boundary on the fluid field has to be formulated by imposing the boundary conditions of the

immersed geometry and distributed on the background Cartesian mesh. Since the IBM does not

require a conforming mesh, it becomes computationally convenient to track the motion of particles

of arbitrary shape while avoiding a cumbersome boundary fitted (re)meshing process.

The implementation of the IBM requires some refinement of the background mesh across the

immersed surface to better capture the shape of the interface as well as to resolve the no-slip

boundary condition. This is accomplished by using selective quadrature (i.e. only using those Gauss

points that lie in the fluid and not inside the immersed particle). This necessitates performing an

”in/out test” to determine the Gauss points inside the fluid domain (red dots) on which we assemble,

while discarding the Gauss points inside the object (green dots), as shown in Fig. 2.3.

The no-slip boundary condition (which is a Dirichlet boundary condition) is converted into

an equivalent Neumann condition (in the sense of the Nitsche method Nitsche (1971)). Thus, we

perform a surface integral over the immersed boundary to weekly impose the Dirichlet boundary
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Figure 2.3: A schematic of the volume assembly in the IBM method. We loop over each element

and each Gauss point within each element. An in-out test is performed to identify weather that

Gauss point is lies inside the particle (red points) or inside the fluid (green points). Only the Gauss

points in the fluid domain are used to assemble the elemental matrices.
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condition of the immersed boundary Bazilevs and Hughes (2007); Bazilevs et al. (2007b, 2010).

Assuming the immersed boundary ΓI is decomposed into Neb surface elements each denoted by Γb
I ,

the semi-discrete problem becomes

BVMS
(
{wh, qh}, {uh, ph}

)
− FVMS

(
{wh, qh}

)
−

Neb∑
b=1

∫
Γb
I

⋂
ΓD

wh ·
(
−ph n + 2

1

<
εεε(uh) n

)
dΓ

−
Neb∑
b=1

∫
Γb
I

⋂
ΓD

(
2

1

<
εεε(wh) n + qh n

)
·
(
uh − ug

)
dΓ

+

Neb∑
b=1

∫
Γb
I

⋂
ΓD

τBwh ·
(
uh − ug

)
dΓ = 0 . (2.13)

The boundary terms added to the governing equation are the second, third and last line in Eq. 2.13,

and a detailed interpretation of different terms can be found in Bazilevs and Hughes (2007). Only

the penalty-like stabilization parameter, τB, is a heuristic that has to be appropriately chosen.

We use the definition proposed in Wu et al. (2017), which scales the stabilization parameter as

τB = Ch/∆t, where C is a positive constant, h is the size of the cut element, and ∆t is the time

step. The boundary terms are imposed onto the surface Gauss points, which are then interpolated

by their background Cartesian grids as shown in Fig. 2.4. In this way we can apply the Dirichlet

boundary condition on the immersed boundary of the object to the fluid field.

The immersed boundary method has previously been deployed on unstructured meshes to track

particle motion in micro-channels and has shown better computational efficiency than a body-fitted

method Xu et al. (2016). We integrate the moving IBM with an octree mesh to achieve even better

performance.

2.4 Scalable IBM on Octree Meshes

While the concept of adaptive space partitions is well studied, developing such methods for

the immersed boundary method on large distributed systems presents significant challenges. This

work builds on our existing methods for performing large-scale finite element computations using
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Figure 2.4: Schematic showing how the surface assembly of IBM is performed. The triangulated

surface mesh is used to identify surface Gauss points (the ’X’ locations). The surface integral

terms (i.e. the last three terms in Eq. 2.13) are computed at these surface Gauss points, and then

distributed to the nodal locations.

octree-refined meshes. We have extended this work to support the particle localization simula-

tions. We provide a brief description on building the octree mesh in parallel and performing FEM

computations and refer to Sundar et al. (2008) for additional details.

While the elemental matrix assemblies are done using TalyFEM described in the next section,

Dendro provides the adaptive mesh refinement (AMR) and all parallel data-structures. For this

project, Dendro was extended to support meshes with holes in it. This is because of the presence

of pillars in the channels where we do not need to solve. An example of such a mesh is shown in

Fig. 2.1.

The main steps in building and maintaining an adaptive mesh in Dendro are:
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Refinement: The sparse grid is constructed based on the geometry. Proceeding in a top-

down fashion, a cell is refined if a surface (pillar/particle) passes though it. During the same step,

we also determine if the cell is completely inside the pillar, and eliminate it from the mesh in that

case. Since the refinement happens in a element-local fashion, this step is embarrassingly parallel.

The user passes a function that given coordinates, x, y, z returns the distance from the pillar(s).

The eight corners of an octant are tested using this function. If all 8 points have a positive distance

(outside), then we retain this element, but do not refine further. If all 8 points have a negative

distance (inside), then this element is removed from the mesh. If some of the corners of the octant

are inside and others outside, then this octant is refined. This is repeated till we reach the desired

level of refinement is achieved. In distributed memory, all processes start from the root and refine

until at least p octants requiring further refinement are produced. Then using a weighted space-

filling-curve based partitioning, we partition the octants. Note that we do not communicate the

octants as every process has a copy of the octants, and all that needs to be done at each process

is to retain a subset of the current octants and recurse. A 2:1 balancing is enforced following the

refinement operation.

2:1 Balancing: We enforce a condition in our distributed octrees that no two neighboring

octants differ in size by more than a factor of two. This makes subsequent operations simpler

without affecting the adaptive properties. Our balancing algorithm is similar to existing approaches

for balancing octrees Bern et al. (1999); Sundar et al. (2007); Burstedde et al. (2011) with the added

aspect that it does not generate octants if the ancestor does not exist in the input. This is done to

ensure that the holes are not filled in. The algorithm proposed by Bern Bern et al. (1999) is easily

extensible to support this case, as we simply need to skip adding balancing octants that violate the

criteria.

Partition: Refinement and the subsequent 2:1-balancing of the octree can result in a non-

uniform distribution of elements across the processes, leading to load imbalance. This is particularly

common in the presence of holes. We use a Hilbert space-filling curve to equipartition the elements
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by performing a parallel scan on the number of elements on each process followed by point-to-point

communication to redistribute the elements. The presence of holes in the domain does not adversely

affect this as the partition only tries to equally divide the elements across the processes.

Elements that intersect the immersed boundary require extra computation to assemble (§2.5.1).

This can cause a load-imbalance during assembly, as the immersed boundary is typically localized on

a small subset of processes and these processes will be the only ones performing surface assembly.

This can be accommodated by estimating the relative cost of volume vs. surface assembly and

performing a weighted partition of the elements. This is not currently done for the results presented

here, but we hope to have this completed soon.

Meshing: By meshing we refer to the construction of the (numerical) data structures re-

quired for FEM computations from the (topological) octree data. Dendro already has efficient

implementations for building the required neighborhood information and for managing overlapping

domains between processors (ghost or halo regions). The key difference with previous applications

is the requirement to handle meshes with holes, as all neighbors might not be present in the mesh.

This also complicates the process of applying boundary conditions. We added support for defining

subdomains within Dendro. The subdomains are defined using a function that takes a coordinate

(x, y, z) as input and returns true or false depending on whether that coordinate is part of the

subdomain or not. The subdomain leverages the core mesh data-structure and additionally defines

a unique mapping for nodes that are part of the subdomain. It also keeps track of which nodes

belong to subdomain boundaries. Therefore, subdomains have a small overhead and store signifi-

cantly less data that the main mesh data-structure. For our target application, it is important to

identify both the external (domain) boundary as well as the internal boundary (the pillar surface).

The subdomain stores two bits to keep track of whether a node is non-boundary, external, or

internal boundary.
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2.5 Integration with TalyFEM

We previously developed code for calculating the elemental matrix and vector for solving Navier-

Stokes with IBM in our in-house FEM framework, TalyFEM, which is designed for arbitrary un-

structured meshes. We chose to integrate the core of our in-house framework with Dendro to avoid

re-implementing the NS+IBM kernel.

Ideally, we would be able to write an adapter that would provide TalyFEM’s API but pass

through to Dendro’s mesh data structure. However, Dendro does not support random access to

octant data - since the node coordinates and elemental connectivity are implicit in the octree’s

structure, Dendro calculates these values on the fly as the octree is traversed, instead of storing the

data persistently as is typically done for an unstructured mesh. Since TalyFEM was designed for

unstructured meshes, support for random element access was assumed in its API. A naive solution

would be to traverse the octree once and build a random access compatible data structure, but this

would impose a significant memory overhead and need to be rebuilt after every remesh.

Instead, we create an unstructured TalyFEM mesh containing a single hexahedral element.

As we iterate through the octree mesh for assembly we re-position the nodes in the unstructured

element to match the octree element. We also copy nodal data (velocity and pressure) from Dendro’s

buffers to support the assembly code. This allows us to reuse our existing assembly implementation

from TalyFEM with virtually no changes with little overhead.

Basis Functions Since unstructured meshes typically have a great number of element shapes,

TalyFEM repeatedly recalculates the isoparametric to physical mapping at each Gauss point. As

these values change depending on the shape of the element, it is not feasible to cache them on a

large unstructured mesh. However, the octree mesh has only one possible element shape; we take

advantage of this by pre-calculating these values during initialization. We create a fake element at

the origin for each level in the octree and cache the evaluated basis functions. When the assembly

code needs to access these values, we pull them from the corresponding level in the cache and offset

the position appropriately.
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2.5.1 Sampling the immersed boundary & adding corrections

The immersed boundary (in our problem, the surface of the particle) is defined by a triangulated

mesh. Surface integration points are then calculated for each triangle using standard Gaussian

quadrature. We also calculate other necessary parameters such as the unit normal and the boundary

value of velocity at each Gauss point.

The surface Gauss points are then sorted and distributed to the process that owns the back-

ground element containing them. We do this by first mapping each surface Gauss point to a

”virtual” element in the most refined octree mesh possible. This ”most refined mesh” is effectively

just a Cartesian grid, which makes the mapping trivial. These ”virtual” elements, which may or

may not exist in the real mesh, are still ordered by the same space-filling curve and thus use the

same partitioning. We sort and distribute each point to the process that owns the real ancestor of

our ”virtual” octant using point-to-point communication.

Now that the surface Gauss points are sorted and on the right processes, we need to visit

them with their background element in context to calculate the IBM corrections for the elemental

matrix and vector. Since the surface Gauss points are already sorted in the same order as the mesh

elements, we can loop over both elements and surface Gauss points simultaneously in linear time;

at each element, we only check if the earliest unvisited surface point is contained by the current

element.

2.5.1.1 The In/Out Test

Nodes that only belong to elements which are fully inside the geometry are marked and set to

have a Dirichlet boundary condition of zero. Since calculating this list of nodes requires information

about neighboring elements and the mesh is partitioned, some communication is necessary. We use

Dendro’s distributed vector data structure to associate an 8-bit integer with each node. This value

represents the number of elements that expect to contribute to this node.

To fill this vector, each process loops over its elements. If an element is not fully inside the

immersed geometry, it adds 1 to this value for all nodes in the element. After each process finishes
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its loop, we synchronize the distributed vector, summing the values in overlapping regions on each

processor. This gives each process a consistent nodal vector, where a value of 0 means the node will

not be solved for by any element on any process. We use this data to apply our Dirichlet boundary

conditions.

2.5.2 Timestepping and particle evolution

The time-dependent Navier–Stokes equation is solved with an implicit scheme. We show results

for a backward Euler time-stepping scheme. Once the fluid field is solved, a surface integral over the

immersed boundary is then performed to calculate the surface force that is exerted on the object

by the fluid.

F =

Neb∑
b=1

∫
Γb
I

⋂
ΓD

σσσ(uh, ph) · ndΓ (2.14)

−
Neb∑
b=1

∫
Γb
I

⋂
ΓD

τB(uh − ug)dΓ,

T =

Neb∑
b=1

∫
Γb
I

⋂
ΓD

r×
(
σσσ(uh, ph) · n

)
dΓ (2.15)

−
Neb∑
b=1

∫
Γb
I

⋂
ΓD

r× τB(uh − ug)dΓ.

The last terms in Eq. 2.14 and Eq. 2.15 are the penalty-like term that are added onto the surface

force calculation. The total force acting on the object is the summation of the surface force and any

external body forces (gravity & buoyancy). The particle evolution is computed using an explicit

Euler solve.

The backward Euler time-stepper for the NS equation is given as

∂u

∂t
=

un − un−1

∆t
= L(un, pn), (2.16)

where the operator L(un, pn) represents all the other terms except the time-dependent term eval-

uated at the current time step in the Navier–Stokes Eq (2.1). ∆t is selected to follow the CFL

condition. The (non)linear solution procedure is taken care by PETSC Arge et al. (1997). We
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utilize PETSc’s Newton-based line search non-linear solver (newtonls) with the BiCGSTAB linear

solver (bcgs). An additive Schwarz preconditioner (asm) is also used for parallel preconditioning

and solving on decomposed sub-domains.

The particle is modeled as a rigid body. We denote the velocity of the objects as v, with the

motion described as

dxc

dt
= vc,

dvc

dt
=

F

m
, (2.17)

dθθθc

dt
= ωωωc,

dωωωc

dt
=

T

J
, (2.18)

where xc and θθθc are the linear and angular locations of the patricle, vc and ωωωc are linear and

angular velocities, F and T are the integral of force and torque acting on the particle surface, and

m and J are the particle mass and moment of inertia, respectively. F and T are computed from

the solution of the fluid field, and defined as follows

F =

∮
Γ

σσσ (u, p) · ndΓ, T =

∮
Γ

r× (σσσ (u, p) · n) dΓ, (2.19)

Where Γ is the boundary of particle, σσσ (u, p) is the stress tensor acting on the particle, r is the

distance vector from the particle centroid to any point on its surface, and the coordinates x and

velocities v at any point on the particle surface is computed as

x = xc + r, v = vc +ωωωc × r. (2.20)

Finally, n is the unit normal vector that points outward from the particle surface. In the discrete

form, assuming the integral of the force and torque over the particle surface are constant during

one time step, we have

(xc)n+1 − (xc)n

∆t
=

(vc)n+1 + (vc)n

2
, (2.21)

(vc)n+1 − (vc)n

∆t
=

(F)n

mi
, (2.22)

(θθθc)n+1 − (θθθc)n

∆t
=

(ωωωc)n+1 + (ωωωc)n

2
, (2.23)

(ωωωc)n+1 − (ωωωc)n

∆t
=

(T)n

mi
. (2.24)
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(F)n and (T)n are discretized in space and computed with weakly imposed boundary condition as

follows

(F)n =

Neb∑
b=1

∫
Γb

⋂
Γ
σσσ(un, pn) · ndΓ (2.25)

−
Neb∑
b=1

∫
Γb

⋂
Γ
τB(un − vn)dΓ, (2.26)

(T)n =

Neb∑
b=1

∫
Γb

⋂
Γ

r× (σσσ(un, pn) · n) dΓ (2.27)

−
Neb∑
b=1

∫
Γb

⋂
Γ

r× τB(un − vn)dΓ (2.28)

The particle velocity is evaluated by an explicit forward Euler scheme, which requires a small ∆t

to ensure accuracy and stability. Each object location is updated by the average velocities.

2.5.3 Intergrid transfers

An essential requirement is to adapt the spatial mesh as the particle moves across the domain.

In the distributed memory setting, this also indicates a need to repartition and load-balance. Every

few timesteps, we remesh. This is similar to the initial mesh generation and refinement, except

that it is now based on the current position of the particle. This is followed by the 2:1 balance

enforcement and meshing. Once the new mesh is generated, we transfer the velocity and pressure

fields from the old mesh to the new mesh using interpolation as needed. Since the integrid transfer

happens only between parent and child (for coarsening and refinement) or are unchanged, this can be

performed on the old mesh using standard linear interpolation, followed by a simple repartitioning

based on the new mesh. An example of the adaptive mesh refinement following the moving particle

is shown in Figure 2.5.
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Figure 2.5: Validation of the framework against an experimental benchmark of a particle setting

due to gravity Ten Cate et al. (2002). (left) A representative mesh illustrating the refinement

around the particle, (middle) A comparison of the height evolution and velocity evolution of the

particle as it settles downwards. Notice the particle reaching a terminal velocity. As the particle

nears the bottom surface its velocity rapidly zeros out. (Right) Contours of total velocity at two

representative time instances.
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2.6 Experiments & Results

2.6.1 Implementation details

The Dendro framework implemented in C++ using MPI for distributed memory parallelism and

OpenMP for shared memory parallelism. The TalyFEM framework is also implemented in C++ with

MPI and is used for evaluating basis functions and interpolating nodal data to support assembly as

described in 2.5. Our code is tightly integrated with PETSc v3.7 Arge et al. (1997)’s distributed

matrix and vector data-structures and utilizes its SNES and KSP solvers.

These tests were compiled and run on Oak Ridge’s Titan supercomputer. PETSc, Dendro,

TalyFEM, and the main program were compiled with the GNU 4.9.3 compiler with -O2 optimization

flags. Timing information was reported using PETSc’s logging framework.

2.6.2 Validation

Before discussing the scaling behavior, we first validate the framework by comparing the particle

trajectory and velocity against a benchmark experimental data of a sphere dropped in a quiescent

fluid Ten Cate et al. (2002). We consider a container of dimensions (0.1m× 0.16m× 0.1m). We

simulate a sphere released at (0.05m, 0.12m, 0.05m) with a diameter of D = 0.015m. The fluid

has a density of ρf = 960 kg/m3, and a dynamic viscosity of µ = 0.058 kg/(m · s). The density of

the sphere is ρs = 1120 kg/m3. Reynolds number, defined as
ρfu0D
µ , is Re = 31.9 with a reference

velocity u0 = 0.128m/s. Initial conditions are set as zero velocity in the whole fluid domain. No

slip boundary condition is imposed on lateral and bottom walls, and no velocity gradient and zero

pressure boundary conditions are imposed on the top wall. The validation results are presented in

Figure 2.5.

2.6.3 Meshes/domains

We next focus on showing scaling of the framework. We collect timing for the case of a dropping

sphere (of size 1) in a domain of size 8× 8× 8. We run each case for 3 time steps. We adaptively

refine the mesh around the interface of the sphere three levels deeper than the rest of the background
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mesh, remeshing after each timestep as the sphere moves. Note that such frequent remeshing is one

of the challenges of our target application. The mesh is defined by a pair of minimum refinement l

and maximum refinement h, where the background mesh element size ranges from 8/2l to 8/2h at

the interface. We adjust the characteristic length of the surface mesh in sync with the refinement of

the interface mesh, keeping a ratio of 1:2 for the surface triangle size to the interface element size.

We run this experiment on five background/interface refinement levels: 4/7, 5/8, 6/9, 7/10, and

8/11. Each refinement level has roughly seven to eight times more degrees of freedom to solve for

than the previous level, with 4/7 having 29,000 degrees of freedom and 8/11 reaching 70.2 million.

We note that given specific l and h and the same initial conditions, the overall problem size

in spite of mesh-refinement is consistent independent of the number of processes being used for

the simulation. To this effect, we believe presenting performance for different l/h combinations for

different number of processes in the style of a strong scaling is appropriate. Indeed, performing

weak scaling for such real-world applications is harder, and therefore, given the somewhat fixed

increase in problem size with increasing l/h, we derive the weak-scalability from a set of strong

scaling experiment (Figure 2.7).

2.6.4 Parallel Scalability

For our target application, the key goal is to be able to perform the simulations quickly, given

the sheer number of simulations we need to perform. Given this, and the relatively moderate size

of our problems, the focus is on strong scalability. We first present strong scalability results for the

overall simulation, including the cost of remeshing in Fig. 2.6 for two problem sizes. Overall our

code scales well, with continued reductions in solve time. We can combine multiple strong scaling

results to get approximate weak scaling results for the overall solve times. Note that in general this

is much harder than the strong scaling results, since it is much harder to ensure that N/p, i.e., the

grain size stay relatively constant. The approximated weak scaling results are presented in Fig. 2.7.

We report additional results to get a deeper understanding of the performance and scalability

of the different parts of our code. We present strong scalability results for Matrix assembly Fig. 2.8
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Figure 2.6: Total time to solve three full timesteps (including remeshing) for different problem sizes

for a single sphere of size 1 dropping in a channel of size 8× 8× 8.
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Figure 2.7: Weak scalability approximated from multiple strong-scaling experiments. Since it is

difficult to perform weak scalability experiments, with such frequent mesh-refinements and con-

sequently changes in problem size, we instead approximate the weak (dashed lines) scaling from

the strong (solid lines) scaling results for r = (5/8, 6/9, 7/10, 8/11) and p up to 16, 384 on Titan.

Note that minor fluctuations in the approximation of the weak scalability are expected due to the

inconsistent grain size.
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Figure 2.8: Matrix assembly time (volume + surface + Dirichlet BC + communication) for various

mesh refinements.

and Vector assembly Fig. 2.9. Both methods scale reasonably well, but the overall time for matrix

assemblty is more expensive compared to the vector assembly. This is largely due to the complex-

ity of the operator. We also report just the time spent in the remeshing stage. The remeshing

stage refers to the combination of generating a new mesh, interpolating between two meshes and

reinitializing the matrix, vector and solver. Effectively, this is the overhead paid for having good

adaptivity. The scaling of remeshing, shown in Fig. 2.11, is not as good as the other parts of the

code, but the magnitude of time it takes is much smaller than solving the NS equations. Again,

note that this is strong scaling, and the meshing code is sufficiently optimized, making it much

harder to demonstrate strong scalability across the full range.

2.6.5 Overhead of immersed boundary corrections

After each remesh we perform the in/out test described in 2.5.1.1 in order to identify which

nodes in the mesh belong to the fluid. We must also redistribute the surface Gauss points to the

appropriate processes as the mesh has been re-partitioned, as described in 2.5.1. In our experiments,

we see this bookkeeping time taking up to 10% of our total solve time and scaling well with the
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Figure 2.9: Vector assembly time (volume + surface + Dirichlet BC + communication) for various

mesh refinements.
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Figure 2.10: Total solve time broken down by category for refinement level 8/11. In-out is described

in section 2.6.5. Matrix/vector refer to the time it takes to build the Jacobian matrix/residual vector

(volume assembly + surface assembly + BC + communication). Solve refers to the time taken to

actually solve the system (i.e. BiCGStab + ASM preconditioner). Remesh refers to time taken to

create the next timestep’s mesh and interpolate data onto it.
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Figure 2.11: Total time for adaptive remeshing for various mesh refinements.

number of processes, as shown in Fig. 2.10 (”In-out”). This figure also highlights that that the

overall runtime is dominated by matrix assembly followed by the solver. It can also be seen that

the overhead of the AMR is negligible (listed under other). Applying the actual IBM corrections

to the matrix and vector takes a more significant amount of time - sometimes more than volume

assembly, as shown in Fig. 2.12, 2.13 - but appears to scale better than volume assembly. This is

likely because we weight non-interface mesh elements the same as elements containing surface Gauss

points when partitioning the mesh. This leads to a work imbalance where processes all perform

roughly equal parts of volume assembly, but only some participate in surface assembly. We plan

to introduce an elemental ”work factor” to the partitioning algorithm to address this imbalance in

the future. This issue is also affects the surface force integral over the immersed boundary which is

used to update the particle velocity. Surface assembly also does not use the cached basis function

values (as volume assembly does), as each surface Gauss point may have a unique position relative

to its background element.

IBM corrections also currently happen in a separate step, isolated from the normal Navier-

Stokes assembly to keep the code modular. We could reduce communication by combining the
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Figure 2.12: Total time spent in matrix assembly broken down by volume vs surface for refinement

level 8/11.

IBM corrections with normal assembly, which would avoid duplicate communications for shared

nodes. This might improve our run time, but would not affect our scaling behavior.

2.7 Summary

We showcased the performance of a scalable, IBM framework based on octree meshes for track-

ing particle localization in complex geometry microfluid channels. This framework allows us to

efficiently construct the deformation maps for particles under a broad range of experimentally ac-

cessible parameters (as illustrated in Fig. 2.2), which will result in a passive approach for particle

localization. Our approach demonstrate excellent strong scalability for the overall solve time, even

with frequent remeshing. Our framework keeps the overhead of AMR and immersed boundary

corrections relatively low, making the overall approach scaleable - one of our design goals. Our im-

mediate goals are to improve the performance for the matrix assembly and incorporate a dynamic

load balancing that accounts for the additional work involved in the surface computations. We are
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Figure 2.13: Total time spent in vector assembly broken down by volume vs surface for refinement

level 8/11.

also working on a couple of extensions to the Dendrite framework which we will discuss in the next

chapter.
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CHAPTER 3. FUTURE DIRECTIONS

This chapter describes a couple of in-progress projects using Dendrite.

3.1 Support for Arbitrary Immersed Geometries

The primary challenge with arbitrary immersed meshes is refining the octree along the immersed

boundary. In this work, we enhanced Dendro to support meshing near the interface of a level-set

function. For a spherical particle, the level-set function is trivial; for an arbitrary mesh, perhaps

designed in a CAD program, deriving such a function may not be straightforward. To support such

meshes, Dendrite also contains a level-set function ”generator” that takes a triangulated mesh and

provides a function to test if a point is inside the mesh using ray-tracing. If the point is outside

the mesh, it returns 1; if it is on the surface of the mesh, it returns 0; if it is inside the mesh, it

returns -1.

There is a well-known algorithm for checking if a polygon contains a point: we cast a ray in a

random direction from the point of interest and count how many times it intersects the triangles of

the mesh Shimrat (1962). If the number of intersections is even, the point is outside the geometry.

We chose to use the algorithm given by Tomas Moller Möller and Trumbore (2005) to detect

ray-triangle intersection for its simplicity. Since our surface meshes can be very fine, we also pre-

calculate a rectangular bounding box for the entire mesh to quickly answer queries for points far

outside the immersed geometry. We also pre-calculate bounding spheres for each triangle to skip

the ray-triangle test if the ray is not near the triangle. Figure 3.1 shows an example of an airplane

mesh with the octree refined around its surface.
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Figure 3.1: The octree mesh refined around the surface of a simplified airplane model.

3.2 Non-rigid Particles: Refining by a Field

Another problem originally started in TalyFEM involves studying the evolution of interfaces in

two-phase flows using a thermodynamically consistent coupled Cahn-Hilliard Navier-Stokes based

formulation Khanwale et al. (2018). This work uses different equations than the particle-in-a-

channel problem outlined in chapter 2 and does not use the immersed boundary method.

For this problem, we need to track (potentially multiple) non-rigid particles as they evolve over

time. These particles may deform or even split into multiple bodies. We use a smooth scalar field

on the finite element mesh which represents the mixture of the two phases. A value of -1 means

the fluid is entirely phase A, a value of 1 means entirely phase B, and 0 represents the interface

between the two phases. We solve for this phase field and the fluid velocity and pressure field using

a block iterative method.

The phase field we are solving is nearly the level set function we want to refine with, but we

are not able to use the level-set-based mesh generator directly due to the lack of random access to
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mesh data. Instead, we once again extend Dendro with a mesh generator that takes an existing

”base” mesh and a scalar elemental vector represents what level each element should be refined to.

Dendro iterates over the base mesh and checks the value in the elemental vector for each octant.

If an element has a higher value than its current refinement, it is split into more octants. If an

element and all its neighbors have a lower value, the octant is coarsened.

This is very similar to the level-set mesh generator, but allows the application to specify the

desired refinement once, globally, instead of on-the-fly for each octant. This is a trade-off: since we

cannot recurse into octants with this method (since the mesh generator is only given refinement

values for the base mesh), we may end up with significant over-refinement if the base mesh is coarse

and the desired refinement is deep and localized. A two-pass approach can be used to correct this

over-refinement if necessary, although this essentially requires us to pay the cost of remeshing

twice. We currently only perform this second pass when creating the initial mesh, as the change in

refinement levels is relatively small after the first solve.

To put into perspective how important adaptive meshing is, in TalyFEM, we needed a uniform

mesh with nearly 1.5 billion elements to simulate a full 3D problem. With Dendrite’s adaptive

remeshing, we can simulate the same problem with less than a million elements - only 0.07% of the

TalyFEM uniform mesh!

Since the equations for this project are carefully tuned and went through many iterations, the

portability of the FEM kernel code between TalyFEM and Dendrite has shined for this project. Our

version of Dendro only supports 3D meshes, which are extremely resource-intensive to simulate for

this particular problem. Our interoperability with TalyFEM has allowed us to quickly prototype

changes to the underlying equations in TalyFEM, validate them in 2D, then copy the changes into

the Dendrite framework with almost no changes.

3.3 Summary and Conclusion

We successfully used Dendrite to solve our target problem. We have shown that our solution

scales to 16k processes, following through on our scalability goal. We have been able to share code
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with multiple existing TalyFEM projects, and the interoperability was immediately helpful for us,

following through on our flexibility goal. We have preliminary results for extending Dendrite to

work with arbitrary meshes using IBM and raytracing-based meshing, as well as refining our meshes

by variables we solve for. We hope to use this framework to publish more work in the future.
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